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ABSTRACT Optimizing the electronic structures and carrier dynamics in semiconductors at atomic

scale is an essential issue for innovative device applications. Besides the traditional chemical doping and

the use of homo/heterostructures, elastic strain has been proposed as a promising possibility. Here, we
report on the direct observation of the dynamics of exciton transport in a ZnO microwire under pure

elastic bending deformation, by using cathodoluminescence with high temporal, spatial, and energy

resolutions. We demonstrate that excitons can be effectively drifted by the strain gradient in
inhomogeneous strain fields. Our observations are well reproduced by a drift-diffusion model taking
into account the strain gradient and allow us to deduce an exciton mobility of 1400 <+ 100 cm?/(eV s) in

the Zn0 wire. These results propose a way to tune the exciton dynamics in semiconductors and imply the °

possible role of strain gradient in optoelectronic and sensing nano/microdevices.
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t is essential for new concept devices, in

particular for very small-scale devices, to

be able to optimize the electronic struc-
ture and carrier dynamics of semiconduc-
tors at the atomic scale. Following a clas-
sical paradigm, chemical doping allows
constructing specially designed electronic
band structures, such as quantum wells and
homo/heterojunctions. It is widely used in
innumerable applications such as optical
detection,"? photovoltaics,>* semiconduc-
tor lasers,” and light-emitting diodes.® Elas-
tic strain, with the exceptional ability to tune
the lattice parameter continuously and
reversibly, has also been proposed as a
possible knob, allowing to modulate the
electronic structure and carrier dynamics
in semiconductors.”® Notable examples
are the strained silicon technology for
enhancing carrier mobility in advanced
transistors'® and piezoelectricity in polar
semiconductors.""'? The field is bound to
become even more prominent through
the recent development of semiconducting
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micro/nanostructures, which possess, thanks
to their high surface to volume ratio, much
higher mechanical toughness and strength
compared to their bulk counterparts.'>'
Because the elastic strain effects are greatly
magnified at the micro/nanoscale, it is pos-
sible to significantly tune their properties by
elastic deformation, staying away from in-
elastic relaxation via plasticity or rupture.’
Recently, major progress has been
achieved on elastic strain engineered semi-
conductor micro/nanostructures. For in-
stance, remarkable red energy shifts of the
near-band-edge (NBE) luminescence have
been observed in uniaxially strained GaAs'>
and ZnO'® nanowires, as well as in bent
Zn0"7 2" and CdS**** micro/nanowires
through photoluminescence (PL) or cath-
odoluminescence (CL). Particularly, due to
the coupling of piezoelectric and semicon-
ducting properties, bending deformation
in ZnO micro/nanowires has given rise
to newfangled nanogenerators'® and
piezo-phototronic devices.?* In all these
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strained micro/nanostructure designs, the strain gra-
dient is exceptionally large and plays an important role.

Even if the use of deformation potentials to con-
trol the carrier mobility has been proposed for de-
cades,®>~%’ the influence of an elastic inhomogeneous
strain field on the carrier dynamics in semiconductors
is however still elusive. Indeed, due to the difficulty in
precisely creating and controlling an elastic inhomo-
geneous strain field in micro/nanostructures and
the lack of an experimental characterization technique
with enough spatial and temporal resolutions, no
direct experimental observation of the dynamics of
excitons under a well-defined strain gradient has
yet been reported. Here, we investigated exciton
dynamics in a purely bent ZnO microwire (MW) with
a uniform strain gradient by both continuous-wave CL
(CW-CL) and picosecond time-resolved CL (pTRCL)
techniques (with spatial resolution limited by the size
of the generation volume of around 200 nm and
temporal resolution of a few picoseconds). The local
optical properties of the wire were examined at both
low (8 K) and room temperatures.

We directly observe that the donor-bound excitons
can be effectively drifted by the uniform elastic strain
gradient in a purely bent ZnO MW of high quality. The
excitons move toward the outer tensile side of the bent
section, because of the continuous variation of the
band gap (thus of the exciton energy) induced by the
bending deformation. A drift-diffusion model allows to
describe accurately the exciton dynamics in the inho-
mogeneous strain field and reproduces well the
experimental results. The model allows us to deduce
a high mobility of 1400 + 100 cm? eV ' s~ for the
donor-bound excitons in the ZnO MWs.

RESULTS AND DISCUSSION

We use hexagonal ZnO MWs oriented along the
[0001] direction, with a diameter ranging between
1 and 3 um, grown by chemical vapor deposition
(CVD) (see Materials and Methods section). To produce,
in a simple way, a precisely adjustable inhomogeneous
deformation, we utilize a four-point-bending (4PB)
configuration,?® as schematically shown in Figure 1a.
In this 4PB configuration, the wire is separated into five
different segments subjected to different strains. The
middle segment, which we are studying here, shows a
well-defined pure bending state with uniform strain
gradient. The pure bending deformation is controlled
precisely by carefully designing the configuration of
the constraining pillars according to ASTM E855-08
specification.?® The local strain & along the [0001] axis
changes linearly from compression (inside the MW) to
tension (outside the MW), passing through a strain-
neutral plane (i.e.,, the geometric neutral plane). The
strain varies as & = r/p ([r < d/2|), which leads to a
constant strain gradient (dey/dr = 1/p) along the wire
cross-section, p being the radius of curvature of the

FU ET AL

strain-neutral plane, r the distance relative to the strain-
neutral plane, and d the diameter of the wire (see
Figure 1b). Figure 1a schematically depicts both the
CW-CL and pTRCL measurements in the pure bending
region of such a 4PB ZnO MW. Figure 1c shows a typical
SEM image of a 4PB ZnO MW. The accurate circular
shape of the MW (dotted line in Figure 1c) confirms
the pure bending deformation. The maximum values
of the tensile and compressive strains at the outer and
inner edges are estimated to be ™ = 41.40%.
Importantly enough, the ZnO MW is elastically de-
formed, as it returns fully to the initial straight geome-
try once the constraints are released.

We first performed CW-CL line scanning across this
4PB ZnO MW at 8 K (see Materials and Methods
section). The line scanning CW-CL spectra collected
at both the straight and pure bending sections
(indicated by the red ellipses “I" and in Figure 1¢)
are presented in Figure 1d and f, respectively. The CL
spectra are very sharp, evidencing the quality of the
wire. More precisely, the CL spectrum of the straight
segment shows a dominant transition from neutral
donor-bound exciton (3.360 eV, D°X,), with addition-
ally the two-electron satellite (3.324 eV, TES) and the
LO phonon replica of DX, (3.292 eV).3%*! There is no
change when moving the spot across the MW (see
Figure 1d). In the pure bending segment, on the
contrary, the luminescence spectrum depends on the
excitation position (see Figure 1f). It is dominated by a
red-shifted peak (3.322 eV) compared to the DX, line
in the unstrained wire. Two other weak but well-
defined peaks emerge at higher energy when the
excitation spot is moved toward the compressive side.
The highest energy peak continuously blue shifts,
while the energy of the middle one remains almost un-
changed. The corresponding CW-CL spectra recorded
at three locations (outer side, middle, and inner side)
across the bent section and one in the unstrained
segment are displayed in Figure 1e.

The spectra obtained under CW-CL mode at room
temperature, on the same 4PB specimen, show some
significant differences. At room temperature, the re-
sults obtained (Supplementary Figure S2) compare
well with the previous studies,'®~%° je,, a linear blue-
shift in the compressive side and red-shift in the tensile
side of bent ZnO micro/nanowires. From the curvature
of the wire estimated from the SEM image, we can
deduce a deformation potential (9E.,/de,;) of around
—27.3 meV/% at room temperature (Supplementary
Figure S2d). This value is larger than Dietrich's experi-
mental result (about —20.4 meV/%)'® on bent ZnO
MWs and close to Rowe's experimental result (about
—29.5 meV/%)3? on homogeneously stressed ZnO. The
difference, between 8 K and room temperature, of the
NBE luminescence features within the pure bending
section is probably due to the coupling between
strained lattice and exciton dynamics.
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Figure 1. Schematic diagram for CL measurements on a purely bent ZnO MW and low-temperature CW-CL results. (a)
Schematic diagram of CL measurements on the pure bending region of a 4PB ZnO MW. (b) Schematic figure of the local strain
& distribution in the pure bending region of a 4PB ZnO MW (up) and the linear change of the local strain ¢ in a purely bent
cross section (down). The blue (& < 0) and red (& > 0) colors show the compressive and tensile regions, respectively. (c) SEM
image of a typical standard 4PB ZnO MW with a diameter of d = 2.24 um. p shows the radius of curvature of the neutral plane in
the purely bent region. (d and f) Line-scanning CW-CL spectra along a straight cross section “I” and a pure bending cross
section “Il” as indicated in part c. The geometric neutral plane of the wire is set as zero for the position axis. (e) CW-CL spectra
at the straight cross section “I” and with an excitation spot outside (¢; = 1.3%), in the middle of (¢ = 0%), and inside
(e = —1.3%) the bent section “II”. The pink dashed line indicates the strain-free peak position of D°X, luminescence.

To understand this difference and reveal the specifi- inside to the tensile outside along a cross section in the
cities of exciton dynamics in inhomogeneous strain pure bending segment are presented in Figure 2b—e.
fields, we further carried out investigations on this 4PB Clearly, the streak-camera images at points A, B, and C
ZnO MW using an original time-resolved CL setup® at are dramatically different from that of the straight
8 K (see Materials and Methods section). segment. The most striking feature is the “comma

Figure 2a presents the time-integrated CL spectra shape” of these time-resolved CL signals at the inner-
under pulsed electron excitation (~1 ps) for the most point A and central point B, which directly illus-
straight segment “I” (e;; = 0%) and three representative trates that the photon energy of the NBE luminescence

positions along the pure bending cross section “Il”: undergoes a time-dependent red-shift after excitation.
point A on the inside (g, = —1.18%), point B in the This time-dependent red-shift evidences a movement
middle (& = 0%), and point C on the outside (& = of excitons from high to low emission energy region
1.03%). The time-integrated spectra look similar to (tensile outside), while no apparent exciton movement
those obtained by CW-CL (Figure 1e), except for the is observed after excitation at the outermost point C.
change of the relative intensity of the high- and low- Figure 3 presents the time-dependent decay traces
energy peaks for excitation at the inner side. The at different emission energies (left column) and CL
corresponding streak-camera images for the time- spectra at different time delays (right column) ex-
dependent CL signals obtained from the straight seg- tracted from the streak-camera images in Figure 2.
ment and the points A, B, and C from the compressive In the decay traces corresponding to innermost point A
FU ET AL. VOL.8 = NO.4 = 3412-3420 = 2014 @M\Qj
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Figure 2. Time-resolved CL spectra results from both straight and pure bending segments at 8 K. (a) Time-integrated CL
spectra with pulsed electron beam exciting at points A (inside: &,y = —1.18%), B (middle: &y, = 0%), and C (outside: &y = 1.03%),
as indicated in the inset, as well as the straight part. (b—e) Streak-camera images showing emission energy as a function of
time (the intensity being color coded) after pulsed electron excitation the straight part (b) and points A, B, and C of the purely
bent section (c, d, e). The pink dashed line indicates the strain-free peak position of D°X, luminescence. The blue and red
dashed lines show the emission photon energy of 3.392 and 3.322 eV, respectively.

(Figure 3a), the higher emission energy shows very
short rise and decay times, while the lower emission
energy has longer rise and decay times. The rise time t,
(the time for the signal to rise from 10% to 90% of the
maximum value) and decay time 74 (fitted by first-
order exponential decay function) at 3.375 eV are 60
and 70 ps, respectively, while the rise and decay times
change to 90 and 100 ps at an intermediate energy of
3.358 eV, respectively. Most importantly, for the ex-
citons at an even lower energy of 3.325 eV, the decay
time 74 remains at about 100 ps, but the rise time 7,
significantly extends to 260 ps, corresponding closely
to the time needed for the high-energy luminescence
to disappear completely. As seen clearly in Figure 3b,
the emission peak gradually red-shifts from 3.392 to
3.322 eV, for time windows shifting from 90 to 410 ps
after excitation. It is worth noting that 3.322 eV is
precisely the exciton emission energy at the outer
edge of the purely bent ZnO MW (Figure 1f). The
emission peak becomes increasingly broad with time,
while a structure can be observed at about 3.365 eV
that becomes a peak at 280 ps (the origin of this
structure will be discussed later). The behavior of both
the decay traces and time-dependent spectra directly
illustrate the donor-bound exciton dynamics in the
pure bending cross section: the excitons formed upon
e-beam excitation at the inside (with larger band gap)
drift toward the outside (with smaller band gap) of the
bent MW. Similar exciton dynamic features can be
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observed with excitation at the central point B
(Figure 3c and d). The rise and decay times at
3.365 eV are 70 and 80 ps, respectively, and increase
to 160 and 100 ps at 3.325 eV. The time-dependent CL
spectrum red-shifts from 3.365 to 3.322 eV for time
slots shifting from 100 to 500 ps. On the contrary, no
obvious exciton drift can be observed at the outermost
point C (Figure 3e and f). Indeed, created at the energy
minimum of the diameter, excitons do not have any
possibility to shift along the strain gradient. The time-
dependent CL spectrum only slightly red-shifts from
3.331 to 3.322 eV, and the rise and decay times at
3.325 eV (70 and 100 ps) are similar to those of the
straight segment (Supplementary Figure S3).

In order to explain the observed bound exciton
dynamics in this bent ZnO MW, a simple drift-diffusion
mechanism taking into account the strain gradient is
proposed. Basically, elastic strain in semiconductors
results in the variation of the electronic band struc-
ture.”*® As confirmed by our room-temperature CW-CL
results, the NBE emission energy changes linearly with
the local strain across the section of the bent segment.
As a result, the generated excitons drift because of the
change in band-gap energy along the strain gradient.
Figure 4a schematically shows the one-dimensional
exciton transport mechanism after excitation at the
compressive side of the bent wire. Since we deal with
donor-bound excitons in ZnO here, such a drift is
unexpected by traditional theories. However, bound
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Figure 3. Time-dependent decays and time-resolved CL spectra at different time delays for excitation at the inside, middle,
and outside of the purely bent section of the MW. The photon energies or the time delay are indicated in the figures. The first
row (a, b) corresponds to excitation at the inside of the MW (point A: &;; = —1.18%), the second row (c, d) to the middle (point B:
& = 0%), and the third row (e, f) to the outside of the MW (point C: & = 1.03%).

excitons can still move by hopping process from donor
to donor. This mechanism for donor-bound exciton via
phonon coupling has already been reported for nitro-
gen traps in GaAsP:N and GalnP:N.>* The hopping
mechanism can be a very efficient process at low
temperature, in particular at the donor densities exist-
ing in our wires, and can be described by an average
exciton mobility for a given strain gradient. Further
details on such a mechanism can be found in ref 35. We
favor hopping of the donor-bound excitons compared
to the possible drift of free excitons, trapped onto
donors along their drift along the strain field. Indeed,
if we observe the spectrum of the straight part of the
ZnO wire, the free exciton line appears only as a
shoulder of the donor-bound exciton emission. This
means that the capture process by donors is much
faster than the radiative lifetime of excitons. In addi-
tion, our direct observation of a change with time of
the donor-bound exciton spectrum is not compatible
with the motionless donor-bound exciton. We indeed
observe that the whole luminescence is shifted to
low energies with time. This clearly favors the motion
of donor-bound exciton even if we cannot discard a
possible drift of free exciton. The excitonic potential
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shows a continuously varying profile, which follows the
change of the band gap (the change of exciton binding
energy under strain is neglected here). This results in
an equivalent built-in field E for the excitons, which can
be written as

= 1
or dey  or (M

E = 9Eex(r) 9Eex(r) %

where E,(r) is the excitonic potential within the cross
section in the pure bending segment, (3Ey(r))/dey =
—27.3 meV/% is the deformation potential of excitons,
and dey/dr = 1/p = 1.25% um ™" is the uniform elastic
strain gradient in the pure bending cross section. This
equivalent built-in field E for the excitons is unique, can
only be formed in inhomogeneous strain fields, and is
determined by the strain gradient.

After excitation at a given location within the cross
section, the time-dependent drift-diffusion equation
for the excitons can be written as

on(r, t) n(r, t)

n(r,t an(r, t
4D n(r, )7#E n(r, t)

2
at T ar? or @)

where n(r, t) is the density of the excitons, 7 is the
recombination lifetime of the excitons (contains both
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Figure 4. Schematic diagram of exciton drift mechanism in the purely bent ZnO MW and drift-diffusion model simulation
result. (a) Schematic diagram of donor-bound exciton drift mechanism in a cross section of the purely bent ZnO MW after
pulsed electron excitation at the inner side (high-energy region). The blue (¢ < 0) and red (& > 0) colors show the
compressive and tensile regions. (b) Drift-diffusion model simulation of the time-dependent exciton distribution in the ZnO
MW pure bending cross section after pulsed excitation at the inner side (point A). (c and d) Best fits of the experimental decay
traces at different photon energies with pulsed excitation at the innermost point A and the central point B in the pure bending

cross section.

the radiative and nonradiative lifetime), D is the exciton
diffusion coefficient, u is the average exciton mobility,
and E is the equivalent built-in field introduced in eq 1.

Figure 4b shows the results, within the above model,
of the time-dependent simulation of the exciton dis-
tribution across the MW after excitation at the inner-
most point A (see Materials and Methods section).
Clearly, due to the equivalent built-in field, the excitons
drift toward the outside part of the bent MW, posses-
sing a lower energy. This results in the time-dependent
red-shift of the exciton emission peak, in agreement
with the time-resolved CL results in Figure 3b and d.
The decay traces at different emission energies are
fitted reasonably well by this drift-diffusion model for
exciting at both points A and B (Figure 4c and d). Fitting
of the experimental results allows us to deduce an
exciton mobility of about 1400 + 100 cm? eV~ ' s~ for
this bent ZnO MW. This value is in good agreement
with the simple estimation we can made directly from
the streak image of Figure 2c: It takes about 400 ps for
an exciton to drift from the high-energy (3.392 eV) side
to the low-energy (3.322 eV) side. This time corresponds
to the time for the exciton to travel d ~ 1.8 um (distance
from excitation spot to outside). We deduce an average
speed of 5 nm/ps. In a gradient field of £~ 312.5 eV/cm
(70 meV in 2.24 um), this corresponds to an exciton
mobility of about 1450 cm? eV ' s ', close to the value
deduced from our drift-diffusion model. Hence, the
time-resolved cathodoluminescence measurement
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provides a direct method to estimate exciton mobility
in such a system.

The same drift-diffusion model explains also quite
well the different CW-CL results at low and room tem-
peratures. At 8 K, the generated excitons move quickly
toward the outside of the MW, due to the high exciton
mobility, before they recombine there. Only a small
portion of the excitons recombines near the excitation
site. Therefore, the line scanning CW-CL spectra show
an intense red-shifted peak and a blue detuned weaker
peak that shifts continuously when the excitation point
moves toward the inside of the MW (Figure 1e and f).
At room temperature, the larger phonon and defect
scattering rates reduce the mobility of the excitons,
nonradiative recombinations reduce their lifetime, and
the exciton drift effect is no longer observable. The
generated excitons recombine radiatively at the ex-
citation location, resulting in a continuous shift of the
NBE luminescence upon moving the excitation posi-
tion across the section of the bent wire (Supplementary
Figure S2).

The only observation that does not fit with our
model is the additional peak at 3.365 eV in the
CW-CL result at 8 K, whose energy does not change
when the excitation spot is moving to the inner
compressive side. This peak is also observed in the
time-resolved CL spectra (Figure 2a and Figure 3b).
One possibility for the origin of this peak would be
the strain-induced valence bands crossing,*® but our
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polarization measurements invalidate this assumption
(Supplementary Figure S4). We tentatively attribute the
additional peak to one of the whispering gallery modes
(WGMs) that are known to exist in ZnO MWs.>*” As
WGMs are by nature coming from the entire diameter
of the wire, they do not change with excitation posi-
tions, as confirmed by our CW-CL result (Figure 1f).
However, since this peak is close to the band-gap
energy, the refractive index is expected to show a
strong dispersion and possible strong coupling could
occur,*® which makes the simulation of the energy of
the mode difficult to predict.

It has been previously suggested that the spatial
distribution of the photoexcited carriers in bent ZnO
NWs could be influenced by the transverse electric
field associated with the piezoelectric effect.?' How-
ever, the transverse piezoelectric field can influence
the motion of only charged carriers, but has no effect
on the motion of the neutral excitons in ZnO, because
of their strong binding energy. If the piezoelectric field
would be strong enough to ionize the bound excitons
into charged electrons and holes, they would move in
opposite directions in space and no luminescence
could be observed. Therefore, our investigation

MATERIALS AND METHODS

In0 MWs Growth. The synthesis of ZnO MWs was carried out
in a horizontal quartz tube furnace by chemical vapor deposi-
tion. The mixture of pure zinc oxide (99.9999%) and graphite
powder (molar ratio of 1:1) was loaded in an alumina boat.
Sapphire chips with (110) orientation were placed above the
source powder as the collecting substrates. The boat was then
placed at the center of the quartz tube and inserted into a rapid
heating furnace. The system was purged of contaminants with
argon gas for more than 10 min. After this, the growth carrier
gas argon was maintained at 200 sccm flow. The furnace was
heated to 1050 °C in 20 min, and then the oxygen (3.0 sccm)
was introduced as the reactive gas. The reaction proceeded for
30 min, after which the system was cooled to room tempera-
ture. After this process the substrate is covered by a layer of ZnO
MWs of high quality. All the ZnO MWs grow along the [0001] axis
with a hexagonal cross-section.

Standard Four-Point-Bending Test. A series of SU8 (SU-8, 2015)
pillar arrays, with a diameter of 6.0 um and a height of 15.0 um,
were fabricated on a Si substrate by photolithography and
developing technology. The SU8 photoresist is spin coated on
the Si substrate (500 rpm for 10 s and then 3000 rpm for 60 s)
and heated (65 °C for 1 min and then 95 °C for 3 min) until so-
lidified, followed by UV lamp exposure (12's, 13 mW/cm?) with a
predesigned mask template and developing with developer
solution. After depositing a 20 nm Au layer by electron-beam
evaporation deposition, an individual ZnO MW is transferred
from the growth substrate onto the prearranged substrate
under an optical microscope by using two needle-shaped glass
tips. The ZnO MW is manipulated and positioned in the middle
of four SU8 pillars, which make the wire take a curved shape
after the end of the manipulation with the two glass tips.
According to ASTM E855-08, in the standard 4PB setup, the
bending part between the two inner SU8 pillars is expected to
be under a pure bending state. Such bending deformation
is elastic, and the curved microwire can resume its original
straight state once it is taken out of the SU8 pillars.

Continuous-Wave (L Measurement. To obtain the optimum spa-
tial resolution with best signal-to-noise ratio, an electron beam
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demonstrates that the donor-bound exciton drift
induced by the elastic strain gradient is the reason of
the overall energetic red-shift in bent ZnO micro/
nanowires observed in all previous works.'”2%!

CONCLUSION

In conclusion, through systematic investigations by
CW- and time-resolved CL on purely bent ZnO MWs
with high spectral, spatial, and temporal resolutions at
8 K, we find that the bound excitons can be driven by
the elastic strain gradient toward the tensile outer side
of the MW with lower exciton energy. A drift-diffusion
model taking into account the strain gradient is pro-
posed to describe the exciton dynamics in the inho-
mogeneous fields and can capture the main feature of
the experimental results. The model allows us to de-
duce a mobility of 1400 & 100 cm? eV~' s~ for the
donor-bound excitons in the bent ZnO wire. This novel
strain gradient induced exciton drift in inhomoge-
neous strain fields should be general to most semicon-
ductors. Our results therefore pioneer an innovative way
to probe the exciton dynamics in semiconductors and
might open the door for novel designs for optoelec-
tronic and sensing micro/nanodevices.

was accelerated at 10 kV (spot size 4 um, beam current of about
0.353 nA). It results, in ZnO, in a generation volume of about
100 nm (with 90% power in this region, as supported by Monte
Carlo simulation).3® The CL spectra were carefully collected step
by step along the radial direction across the diameter of the ZnO
microwires from the inner side to the outer side by CL spec-
troscopy (Gatan monocle 3+) at liquid helium temperature
(8 K). The CL spectra were recorded by a CCD (charge coupled
device) with a scanning range of 300 to 450 nm with a spectral
resolution of about 0.5 nm. The line-scanning step size was set
at 200 nm considering the typical exciton diffusion length is
about 200 nm in ZnO at this temperature.*

Time-Resolved CL Measurement. The experimental setup for the
time-resolved CL (TRCL) is composed of three blocks: the
excitation block, the Attolight system for quantitative cathodo-
luminescence, and the detection block. The excitation block
generates ultraviolet light pulses (266 nm, 200 fs, 80.7 MHz
repetition rate, spot size of 3 um) using a mode-locked Ti:
sapphire laser (Coherent Mira 900F, 800 nm, 1 W) pumped by
a continuous, high-power laser (Coherent Verdi V8, 532 nm,
8 W). A frequency tripler (Inrad M/N 5-050) is then used to
achieve ultraviolet wavelengths. These ultraviolet light pulses
are collimated into an optical fiber whose end is coated with a
20 nm thick gold (Au) layer, serving as a photocathode, to
generate femtosecond electron pulses. Quantitative cathodo-
luminescence is performed using an Attolight Alalin Chronos
4027 system. The Attolight system integrates an achromatic
reflective lens (NA 0.71) within the objective lens of the electron
scanning microscope, thus aligning their focal planes and
suppressing any necessary alignment. The Attolight system
is also equipped with a specifically designed cryo-stage (drift
<10 nm), easing measurements at low temperatures. The
cathodoluminescence signal is diffracted spectrally by a three-
turret grating monochromator (IHR 320) and collected by a
synapse CCD camera. For the time-resolved signal, a streak
camera (Hamamatsu C5680) with 2 ps resolution is used in the
photon counting mode.

Drift-Diffusion Model Simulation. The drift-diffusion model
based on the differential eq 2 has been solved by means of
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discretization with finite difference methods. The excitation of
the system by a Gaussian beam of electrons (full width at half-
maximum (fwhm) of 50 nm) has been taken as initial condition
at time 0. The parameters used for the simulation are D, the ex-
citon diffusion coefficient D = 13 cm?/s; u, the exciton mobility
1=1400cm? eV~ s7"; 7, the effective exciton lifetime 7 =300 ps;
and vy, the surface recombination velocity, Vo= 5 x 10° cm/s.
In the simulation, the surface recombination velocity is imple-
mented by adding a recombination term in eq 2 for the boundary
conditions for r = D/2 (surface of the wire):*'

£n<9 t> = 71n<9 t>+D£n<9 t>

at \2’ T \2' a2 \2’
wfin(B,t)f ! n<9,t>
o\ 2 Touf \2

Since this surface coefficient is defined only for the last pixel, we
define a surface recombination velocity, independent of discre-
tization procedure:

Ar
Vouf = ——
Tsurf
where Ar is the size of the discretization step.

By solving eq 2, we obtain the distribution of carrier along
the wire as a function of time. Equation 1 and CW-CL measure-
ments then allow us to get the relation between r and the
luminescence energy Ec,. Since the CL intensity is proportional
to the exciton density (we assume a constant radiative decay
time along the wire), we obtained the CL spectra as a function of
time with our model. In order to take into account the broad-
ening of the cathodoluminescence spectra, we convolve n(r)
with a Gaussian function with a fwhm of 7 meV.
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